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First	published	Tue	Jan	8,	2008;	substantive	revision	Fri	Dec	10,	2021	The	principle	of	set	theory	known	as	the	Axiom	of	Choice	has	been	hailed	as	“probably	the	most	interesting	and,	in	spite	of	its	late	appearance,	the	most	discussed	axiom	of	mathematics,	second	only	to	Euclid’s	axiom	of	parallels	which	was	introduced	more	than	two	thousand	years
ago”	(Fraenkel,	Bar-Hillel	&	Levy	1973,	§II.4).	The	fulsomeness	of	this	description	might	lead	those	unfamiliar	with	the	axiom	to	expect	it	to	be	as	startling	as,	say,	the	Principle	of	the	Constancy	of	the	Velocity	of	Light	or	the	Heisenberg	Uncertainty	Principle.	But	in	fact	the	Axiom	of	Choice	as	it	is	usually	stated	appears	humdrum,	even	self-evident.
For	it	amounts	to	nothing	more	than	the	claim	that,	given	any	collection	of	mutually	disjoint	nonempty	sets,	it	is	possible	to	assemble	a	new	set—a	transversal	or	choice	set—containing	exactly	one	element	from	each	member	of	the	given	collection.	Nevertheless,	this	seemingly	innocuous	principle	has	far-reaching	mathematical	consequences—many
indispensable,	some	startling—and	has	come	to	figure	prominently	in	discussions	on	the	foundations	of	mathematics.	It	(or	its	equivalents)	have	been	employed	in	countless	mathematical	papers,	and	a	number	of	monographs	have	been	exclusively	devoted	to	it.	In	1904	Ernst	Zermelo	formulated	the	Axiom	of	Choice	(abbreviated	as	AC	throughout	this
article)	in	terms	of	what	he	called	coverings	(Zermelo	1904).	He	starts	with	an	arbitrary	set	\(M\)	and	uses	the	symbol	\(M'\)	to	denote	an	arbitrary	nonempty	subset	of	\(M\),	the	collection	of	which	he	denotes	by	M.	He	continues:	Imagine	that	with	every	subset	\(M'\)	there	is	associated	an	arbitrary	element	\(m_{1}'\),	that	occurs	in	\(M'\)	itself;	let	\
(m_{1}'\)	be	called	the	“distinguished”	element	of	\(M'\).	This	yields	a	“covering”	\(g\)	of	the	set	\(M\)	by	certain	elements	of	the	set	\(M\).	The	number	of	these	coverings	is	equal	to	the	product	[of	the	cardinalities	of	all	the	subsets	\(M'\)]	and	is	certainly	different	from	0.	The	last	sentence	of	this	quotation—which	asserts,	in	effect,	that	coverings
always	exist	for	the	collection	of	nonempty	subsets	of	any	(nonempty)	set—is	Zermelo’s	first	formulation	of	the	Axiom	of	Choice[1].	This	is	now	usually	stated	in	terms	of	choice	functions:	here	a	choice	function	on	a	collection	\(\sH\)	of	nonempty	sets	is	a	map	\(f\)	with	domain	\(\sH\)	such	that	\(f(X)	\in	X\)	for	every	\(X	\in	\sH\).	As	a	very	simple
example,	let	\(\sH\)	be	the	collection	of	nonempty	subsets	of	\(\{0,	1\}\),	i.e.,	\(\sH	=	\{\{0\},	\{1\},	\{0,1\}\}\).	Then	\(\sH\)	has	the	two	distinct	choice	functions	\(f_{1}\)	and	\(f_{2}\)	given	by:	\begin{align}	f_{1}(\{0\})	&=	0	\\	f_{1}(\{1\})	&=	1	\\	f_{1}(\{0,	1\})	&=	0	\\	f_{2}(\{0\})	&=	0	\\	f_{2}(\{1\})	&=	1	\\	f_{2}(\{0,	1\})	&=	1	\end{align}	A	more
interesting	example	of	a	choice	function	is	provided	by	taking	\(\sH\)	to	be	the	set	of	(unordered)	pairs	of	real	numbers	and	the	function	to	be	that	assigning	to	each	pair	its	least	element.	A	different	choice	function	is	obtained	by	assigning	to	each	pair	its	greatest	element.	Clearly	many	more	choice	functions	on	\(\sH\)	can	be	defined.	Stated	in	terms
of	choice	functions,	Zermelo’s	first	formulation	of	AC	reads:	AC1:	Any	collection	of	nonempty	sets	has	a	choice	function.	AC1	can	be	reformulated	in	terms	of	indexed	or	variable	sets.	An	indexed	collection	of	sets	\(\sA	=	\{A_{i}:	i	\in	I\}\)	may	be	conceived	as	a	variable	set,	to	wit,	as	a	set	varying	over	the	index	set	\(I\).	Each	\(A_{i}\)	is	then	the
“value”	of	the	variable	set	\(\sA\)	at	stage	\(i\).	A	choice	function	on	\(\sA\)	is	a	map	\(f:	I	\rightarrow	\bigcup_{i\in	I}	A_{i}\)	such	that	\(f(i)	\in	A_{i}\)	for	all	\(i\in	I\).	A	choice	function	on	\(\sA\)	is	thus	a	“choice”	of	an	element	of	the	variable	set	\(\sA\)	at	each	stage;	in	other	words,	a	choice	function	on	\(\sA\)	is	a	variable	element	of	\(\sA\).	AC1	is	then
equivalent	to	the	assertion	AC2:	Any	indexed	collection	of	sets	has	a	choice	function.	Informally	speaking,	AC2	amounts	to	the	assertion	that	a	variable	set	with	an	element	at	each	stage	has	a	variable	element.	AC1	can	also	be	reformulated	in	terms	of	relations,	viz.	AC3:	For	any	relation	\(R\)	between	sets	\(A\),	\(B\),	\[	{\forall	x\inn	A}\	\exists	y\inn
B[R(x,y)]	\Rightarrow	\exists	f[f:	A	\rightarrow	B	\amp	{\forall	x\inn	A}[R(x,fx)]].	\]	In	other	words,	every	relation	contains	a	function	having	the	same	domain.	Finally	AC3	is	easily	shown	to	be	equivalent	(in	the	usual	set	theories)	to:[2]	AC4:	Any	surjective	function	has	a	right	inverse.	In	a	1908	paper	Zermelo	introduced	a	modified	form	of	AC.	Let	us
call	a	transversal	(or	choice	set)	for	a	family	of	sets	\(\sH\)	any	subset	\(T	\subseteq	\bigcup	\sH\)	for	which	each	intersection	\(T	\cap	X\)	for	\(X	\in	\sH\)	has	exactly	one	element.	As	a	very	simple	example,	let	\(\sH	=	\{\{0\},	\{1\},	\{2,	3\}\}\).	Then	\(\sH\)	has	the	two	transversals	\(\{0,	1,	2\}\)	and	\(\{0,	1,	3\}\).	A	more	substantial	example	is	afforded
by	letting	\(\sH\)	be	the	collection	of	all	lines	in	the	Euclidean	plane	parallel	to	the	\(x\)-axis.	Then	the	set	\(T\)	of	points	on	the	\(y\)-axis	is	a	transversal	for	\(\sH\).	Stated	in	terms	of	transversals,	then,	Zermelo’s	second	(1908)	formulation	of	AC	amounts	to	the	assertion	that	any	family	of	mutually	disjoint	nonempty	sets	has	a	transversal.[3]	Zermelo
asserts	that	“the	purely	objective	character”	of	this	principle	“is	immediately	evident.”	In	making	this	assertion	Zermelo	meant	to	emphasize	the	fact	that	in	this	form	the	principle	makes	no	appeal	to	the	possibility	of	making	“choices”.	It	may	also	be	that	Zermelo	had	the	following	“combinatorial”	justification	of	the	principle	in	mind.	Given	a	family	\
(\sH\)	of	mutually	disjoint	nonempty	sets,	call	a	subset	\(S	\subseteq	\bigcup	\sH\)	a	selector	for	\(\sH\)	if	\(S\cap	X	e	\varnothing\)	for	all	\(X	\in	\sH\).	Clearly	selectors	for	\(\sH\)	exist;	\(\bigcup	\sH\)	itself	is	an	example.	Now	one	can	imagine	taking	a	selector	\(S\)	for	\(\sH\)	and	“thinning	out”	each	intersection	\(S	\cap	X\)	for	\(X\in	\sH\)	until	it	contains
just	a	single	element.	The	result	is	a	transversal	for	\(\sH\).	This	argument,	suitably	refined,	yields	a	precise	derivation	of	AC	in	this	formulation	from	the	set-theoretical	principle	known	as	Zorn’s	lemma	(see	below).	Let	us	call	Zermelo’s	1908	formulation	the	combinatorial	axiom	of	choice:	CAC:	Any	collection	of	mutually	disjoint	nonempty	sets	has	a
transversal.	It	is	to	be	noted	that	AC1	and	CAC	for	finite	collections	of	sets	are	both	provable	(by	induction)	in	the	usual	set	theories.	But	in	the	case	of	an	infinite	collection,	even	when	each	of	its	members	is	finite,	the	question	of	the	existence	of	a	choice	function	or	a	transversal	is	problematic[4].	For	example,	as	already	mentioned,	it	is	easy	to	come
up	with	a	choice	function	for	the	collection	of	pairs	of	real	numbers	(simply	choose	the	smaller	element	of	each	pair).	But	it	is	by	no	means	obvious	how	to	produce	a	choice	function	for	the	collection	of	pairs	of	arbitrary	sets	of	real	numbers.	Zermelo’s	original	purpose	in	introducing	AC	was	to	establish	a	central	principle	of	Cantor’s	set	theory,
namely,	that	every	set	admits	a	well-ordering	and	so	can	also	be	assigned	a	cardinal	number.	Zermelo’s	1904	introduction	of	the	axiom,	as	well	as	the	use	to	which	he	put	it,	provoked	considerable	criticism	from	the	mathematicians	of	the	day.	The	chief	objection	raised	was	to	what	some	saw	as	its	highly	non-constructive,	even	idealist,	character:
while	the	axiom	asserts	the	possibility	of	making	a	number	of—perhaps	even	an	uncountable	number—of	arbitrary	“choices”,	it	gives	no	indication	whatsoever	of	how	these	latter	are	actually	to	be	effected,	of	how,	otherwise	put,	choice	functions	are	to	be	defined.	This	was	particularly	objectionable	to	mathematicians	of	a	“constructive”	bent	such	as
the	so-called	French	Empiricists	Baire,	Borel	and	Lebesgue,	for	whom	a	mathematical	object	could	be	asserted	to	exist	only	if	it	can	be	defined	in	such	a	way	as	to	characterize	it	uniquely.	Zermelo’s	response	to	his	critics	came	in	the	form	in	two	papers	in	1908.	In	the	first	of	these,	as	remarked	above,	he	reformulated	AC	in	terms	of	transversals;	in
the	second	(1908a)	he	made	explicit	the	further	assumptions	needed	to	carry	through	his	proof	of	the	well-ordering	theorem.	These	assumptions	constituted	the	first	explicit	presentation	of	an	axiom	system	for	set	theory.	As	the	debate	concerning	the	Axiom	of	Choice	rumbled	on,	it	became	apparent	that	the	proofs	of	a	number	of	significant
mathematical	theorems	made	essential	use	of	it,	thereby	leading	many	mathematicians	to	treat	it	as	an	indispensable	tool	of	their	trade.	Hilbert,	for	example,	came	to	regard	AC	as	an	essential	principle	of	mathematics[5]	and	employed	it	in	his	defence	of	classical	mathematical	reasoning	against	the	attacks	of	the	intuitionists.	Indeed	his	ε-operators
are	essentially	just	choice	functions	(see	the	entry	on	the	epsilon	calculus).	Although	the	usefulness	of	AC	quickly	become	clear,	doubts	about	its	soundness	remained.	These	doubts	were	reinforced	by	the	fact	that	it	had	certain	strikingly	counterintuitive	consequences.	The	most	spectacular	of	these	was	Banach	and	Tarski’s	paradoxical
decompositions	of	the	sphere	(Banach	and	Tarski	1924):	any	solid	sphere	can	be	split	into	finitely	many	pieces	which	can	be	reassembled	to	form	two	solid	spheres	of	the	same	size;	and	any	solid	sphere	can	be	split	into	finitely	many	pieces	in	such	a	way	as	to	enable	them	to	be	reassembled	to	form	a	solid	sphere	of	arbitrary	size.	(See	Wagon	1993.)	It
was	not	until	the	middle	1930s	that	the	question	of	the	soundness	of	AC	was	finally	put	to	rest	with	Kurt	Gödel’s	proof	of	its	consistency	relative	to	the	other	axioms	of	set	theory.	Here	is	a	brief	chronology	of	AC:[6]	1904/1908	Zermelo	introduces	axioms	of	set	theory,	explicitly	formulates	AC	and	uses	it	to	prove	the	well-ordering	theorem,	thereby
raising	a	storm	of	controversy.	1904	Russell	recognizes	AC	as	the	multiplicative	axiom:	the	product	of	arbitrary	nonzero	cardinal	numbers	is	nonzero.	1914	Hausdorff	derives	from	AC	the	existence	of	nonmeasurable	sets	in	the	“paradoxical”	form	that	\(\bfrac{1}{2}\)	of	a	sphere	is	congruent	to	\(\bfrac{1}{3}\)	of	it	(Hausdorff	1914).	1922	Fraenkel
introduces	the	“permutation	method”	to	establish	independence	of	AC	from	a	system	of	set	theory	with	atoms	(Fraenkel	1922).	1924	Building	on	the	work	of	Hausdorff,	Banach	and	Tarski	derive	from	AC	their	paradoxical	decompositions	of	the	sphere.	1926	Hilbert	introduces	into	his	proof	theory	the	“transfinite”	or	“epsilon”	axiom	as	a	version	of	AC	.
(Hilbert	1926).	1936	Lindenbaum	and	Mostowski	extend	and	refine	Fraenkel’s	permutation	method,	and	prove	the	independence	of	various	statements	of	set	theory	weaker	than	AC	.	(Lindenbaum	and	Tarski	1938)	1935–38	Gödel	establishes	relative	consistency	of	AC	with	the	axioms	of	set	theory	(Gödel	1938a,	1938b,	1939,	1940).	1950s	Mendelson,
Shoenfield	and	Specker,	working	independently,	use	the	permutation	method	to	establish	the	independence	of	various	forms	of	AC	from	a	system	of	set	theory	without	atoms,	but	also	lacking	the	axiom	of	foundation	(Mendelson	1956,	1958,	Shoenfield	1955,	Specker	1957).	1963	Paul	Cohen	proves	independence	of	AC	from	the	standard	axioms	of	set
theory	(Cohen	1963,	1964).	2.	Independence	and	Consistency	of	the	Axiom	of	Choice	As	stated	above,	in	1922	Fraenkel	proved	the	independence	of	AC	from	a	system	of	set	theory	containing	“atoms”.	Here	by	an	atom	is	meant	a	pure	individual,	that	is,	an	entity	having	no	members	and	yet	distinct	from	the	empty	set	(so	a	fortiori	an	atom	cannot	be	a
set).	In	a	system	of	set	theory	with	atoms	it	is	assumed	that	one	is	given	an	infinite	set	\(A\)	of	atoms.	One	can	build	a	universe	\(V(A)\)	of	sets	over	\(A\)	by	starting	with	\(A\),	adding	all	the	subsets	of	\(A\),	adjoining	all	the	subsets	of	the	result,	etc.,	and	iterating	transfinitely.	\(V(A)\)	is	then	a	model	of	set	theory	with	atoms.	The	kernel	of	Fraenkel’s
method	for	proving	the	independence	of	AC	is	the	observation	that,	since	atoms	cannot	be	set-theoretically	distinguished,	any	permutation	of	the	set	\(A\)	of	atoms	induces	a	structure-preserving	permutation—an	automorphism—of	the	universe	\(V(A)\)	of	sets	built	from	\(A\).	This	idea	may	be	used	to	construct	another	model	\(Sym(V)\)	of	set	theory—a
permutation	or	symmetric	model—in	which	a	set	of	mutually	disjoint	pairs	of	elements	of	\(A\)	has	no	choice	function.	Now	let	us	suppose	that	we	are	given	a	group	\(G\)	of	automorphisms	of	\(A\).	Let	us	say	that	an	automorphism	\(\pi\);	of	\(A\)	fixes	an	element	\(x\)	of	\(V(A)\)	if	\(\pi(x)	=	x\).	Clearly,	if	\(\pi	\in	G\)	fixes	every	element	of	\(A\),	it	also	fixes
every	element	of	\(V(A)\).	Now	it	may	be	the	case	that,	for	certain	elements	\(x	\in	V(A)\),	the	fixing	of	the	elements	of	a	subset	of	\(A\)	by	any	\(\pi\in	G\)	suffices	to	fix	\(x\).	We	are	therefore	led	to	define	a	support	for	\(x\)	to	be	a	subset	\(X\)	of	\(A\)	such	that,	whenever	\(\pi\in	G\)	fixes	each	member	of	\(X\),	it	also	fixes	\(x\).	Members	of	\(V(A)\)
possessing	a	finite	support	are	called	symmetric.	We	next	define	the	universe	\(Sym(V)\)	to	consist	of	the	hereditarily	symmetric	members	of	\(V(A)\),	that	is,	those	\(x\in	V(A)\)	such	that	\(x\),	the	elements	of	\(x\),	the	elements	of	elements	of	\(x\),	etc.,	are	all	symmetric.	\(Sym(V)\)	is	also	a	model	of	set	theory	with	set	of	atoms	\(A\),	and	\(\pi\)	induces	an
automorphism	of	\(Sym(V)\).	Now	suppose	\(A\)	to	be	partitioned	into	a	(necessarily	infinite)	mutually	disjoint	set	\(P\)	of	pairs.	Take	\(G\)	to	be	the	group	of	permutations	of	\(A\)	which	fix	all	the	pairs	in	\(P\).	Then	\(P\in	Sym(V)\);	it	can	now	be	shown	that	\(Sym(V)\)	contains	no	choice	function	on	\(P\).	For	suppose	\(f\)	were	a	choice	function	on	\(P\)
and	\(f	\in	Sym(V)\).	Then	\(f\)	has	a	finite	support	which	may	be	taken	to	be	of	the	form	\(\{a_{1},	\ldots,	a_{n},	b_{1},\ldots,b_{n}\}	with	each	pair	\{a_{i},	b_{i}\}	\in	P\).	Since	\(P\)	is	infinite,	we	may	select	a	pair	\(\{c,	d\}	=	U\)	from	\(P\)	different	from	all	the	\(\{a_{i},	b_{i}\}\).	Now	we	define	\(\pi	\in	G\)	so	that	\(\pi\)	fixes	each	\(a_{i}\)	and	\
(b_{i}\)	and	interchanges	\(c\)	and	\(d\).	Then	\(\pi\)	also	fixes	\(f\).	Since	\(f\)	was	supposed	to	be	a	choice	function	on	\(P\),	and	\(U	\in	P\),	we	must	have	\(f(U)	\in	U\),	that	is,	\(f(U)	=	c\)	or	\(f(U)	=	d\).	Since	\(\pi\)	interchanges	\(c\)	and	\(d\),	it	follows	that	\(\pi(f(U))	e	f(U)\).	But	since	\(\pi\)	is	an	automorphism,	it	also	preserves	function	application,	so
that	\(\pi(f(U))	=	\pi	f(\pi(U))\).	But	\(\pi(U)	=	U\)	and	\(\pi	f	=	f\),	whence	\(\pi(f(U))	=	f(U)\).	We	have	duly	arrived	at	a	contradiction,	showing	that	the	universe	\(Sym(V)\)	contains	no	choice	function	on	\(P\).	The	point	here	is	that	for	a	symmetric	function	\(f\)	defined	on	\(P\)	there	is	a	finite	list	\(L\)	of	pairs	from	\(P\)	the	fixing	of	all	of	whose	elements
suffices	to	fix	\(f\),	and	hence	also	all	the	values	of	\(f\).	Now,	for	any	pair	\(U\)	in	\(P\)	but	not	in	\(L\)	,	a	permutation	\(\pi\)	can	always	be	found	which	fixes	all	the	elements	of	the	pairs	in	\(L\),	but	does	not	fix	the	members	of	\(U\).	Since	\(\pi\)	must	fix	the	value	of	\(f\)	at	\(U\),	that	value	cannot	lie	in	\(U\).	Therefore	\(f\)	cannot	“choose”	an	element	of	\
(U\),	so	a	fortiori	\(f\)	cannot	be	a	choice	function	on	\(P\).	This	argument	shows	that	collections	of	sets	of	atoms	need	not	necessarily	have	choice	functions,	but	it	fails	to	establish	the	same	fact	for	the	“usual”	sets	of	mathematics,	for	example	the	set	of	real	numbers.	This	had	to	wait	until	1963	when	Paul	Cohen	showed	that	it	is	consistent	with	the
standard	axioms	of	set	theory	(which	preclude	the	existence	of	atoms)	to	assume	that	a	countable	collection	of	pairs	of	sets	of	real	numbers	fails	to	have	a	choice	function.	The	core	of	Cohen’s	method	of	proof—the	celebrated	method	of	forcing—was	vastly	more	general	than	any	previous	technique;	nevertheless	his	independence	proof	also	made
essential	use	of	permutation	and	symmetry	in	essentially	the	form	in	which	Fraenkel	had	originally	employed	them.	Gödel’s	proof	of	the	relative	consistency	of	AC	with	the	axioms	of	set	theory	(see	the	entry	on	Kurt	Gödel)	rests	on	an	entirely	different	idea:	that	of	definability.	He	introduced	a	new	hierarchy	of	sets—the	constructible	hierarchy—by
analogy	with	the	cumulative	type	hierarchy.	We	recall	that	the	latter	is	defined	by	the	following	recursion	on	the	ordinals,	where	\(\sP(X)\)	is	the	power	set	of	\(X\),	\(\alpha\)	is	an	ordinal,	and	\(\lambda\)	is	a	limit	ordinal::	\begin{align}	V_0	&=	\varnothing	\\	V_{\alpha+1}	&=	\sP(V_{\alpha})	\\	V_{\lambda}	&=	{\bigcup}_{\alpha	\lt	\lambda}
V_{\alpha}	\end{align}	The	constructible	hierarchy	is	defined	by	a	similar	recursion	on	the	ordinals,	where	\(\Def(X)\)	is	the	set	of	all	subsets	of	\(X\)	which	are	first-order	definable	in	the	structure	\((X,	\in,	(x)_{x\in	X})\):[7]	\begin{align}	L_0	&=	\varnothing	\\	L_{\alpha+1}	&=	\Def(L_{\alpha})	\\	L_{\lambda}	&=	{\bigcup}_{\alpha\lt	\lambda}
L_{\alpha}	\end{align}	The	constructible	universe	is	the	class	\(L	=	\bigcup_{\alpha\in	\Ord}	L_{\alpha}\);	the	members	of	\(L\)	are	the	constructible	sets.	Gödel	showed	that	(assuming	the	axioms	of	Zermelo-Fraenkel	set	theory	ZF)	the	structure	\((L,	\in)\)	is	a	model	of	ZF	and	also	of	AC	as	well	as	the	Generalized	Continuum	Hypothesis).	The	relative
consistency	of	AC	with	ZF	follows.	It	was	also	observed	by	Gödel	(1964)	(and,	independently,	by	Myhill	and	Scott	1971,	Takeuti	1963	and	Post	1951)	that	a	simpler	proof	of	the	relative	consistency	of	AC	can	be	formulated	in	terms	of	ordinal	definability.	If	we	write	\(\rD(X)\)	for	the	set	of	all	subsets	of	\(X\)	which	are	first-order	definable	in	the
structure	\((X,	\in)\),	then	the	class	OD	of	ordinal	definable	sets	is	defined	to	be	the	union	\(\bigcup_{\alpha\in	\Ord}	D(V_{\alpha})\).	The	class	HOD	of	hereditarily	ordinal	definable	sets	consists	of	all	sets	\(a\)	for	which	\(a\),	the	members	of	\(a\),	the	members	of	members	of	\(a\),	…	etc.,	are	all	ordinal	definable.	It	can	then	be	shown	that	the	structure
(HOD,	\(\in\))	is	a	model	of	ZF	+	AC	,	from	which	the	relative	consistency	of	AC	with	ZF	again	follows.[8]	3.	Maximal	Principles	and	Zorn’s	Lemma	The	Axiom	of	Choice	is	closely	allied	to	a	group	of	mathematical	propositions	collectively	known	as	maximal	principles.	Broadly	speaking,	these	propositions	assert	that	certain	conditions	are	sufficient	to
ensure	that	a	partially	ordered	set	contains	at	least	one	maximal	element,	that	is,	an	element	such	that,	with	respect	to	the	given	partial	ordering,	no	element	strictly	exceeds	it.	To	see	the	connection	between	the	idea	of	a	maximal	element	and	AC,	let	us	return	to	the	latter’s	formulation	AC2	in	terms	of	indexed	sets.	Accordingly	suppose	we	are	given
an	indexed	family	of	nonempty	sets	\(\sA	=	\{A_{i}:i	\in	I\}.\)	Let	us	define	a	potential	choice	function	on	\(\sA\)	to	be	a	function	\(f\)	whose	domain	is	a	subset	of	\(I\)	such	that	\(f(i)	\in	A_{i}\)	for	all	\(i\in	J\).	(Here	the	use	of	the	qualifier	potential	is	suggested	by	the	fact	that	the	domain	is	a	subset	of	\(I\);	recall	that	a	choice	function	\(f\)	on	\(\sA\)	has
the	same	properties	as	what	we	are	now	calling	potential	choice	functions	except	that	the	domain	of	\(f\)	is	required	to	be	all	of	\(I\),	not	just	a	subset.)	The	set	\(P\)	of	potential	choice	functions	on	\(\sA\)	can	be	partially	ordered	by	inclusion:	we	agree	that,	for	potential	choice	functions	\(f,	g	\in	P\),	the	relation	\(f	\le	g\)	holds	provided	that	the	domain
of	\(f\)	is	included	in	that	of	\(g\)	and	the	value	of	\(f\)	at	an	element	of	its	domain	coincides	with	the	value	of	\(g\)	there.	It	is	now	easy	to	see	that	the	maximal	elements	of	\(P\)	with	respect	to	the	partial	ordering	\(\le\)	are	precisely	the	choice	functions	on	\(\sA\).	Zorn’s	Lemma	is	the	best-known	principle	ensuring	the	existence	of	such	maximal
elements.	To	state	it,	we	need	a	few	definitions.	Given	a	partially	ordered	set	\((P,	\le)\),	an	upper	bound	for	a	subset	\(X\)	of	\(P\)	is	an	element	\(a\in	P\)	for	which	\(x\le	a\)	for	every	\(x\in	X\);	a	maximal	element	of	\(P\)	may	then	be	defined	as	an	element	\(a\)	for	which	the	set	of	upper	bounds	of	\(\{a\}\)	coincides	with	\(\{a\}\),	which	essentially	means
that	no	element	of	\(P\)	is	strictly	larger	than	\(a\).	A	chain	in	\((P,\le)\)	is	a	subset	\(C\)	of	\(P\)	such	that,	for	any	\(x\),	\(y\in	P\),	either	\(x\le	y\)	or	\(y\le	x\).	\(P\)	is	said	to	be	inductive	if	every	chain	in	\(P\)	has	an	upper	bound.	Now	Zorn’s	Lemma	asserts:	Zorn’s	Lemma	(ZL):	Every	nonempty	inductive	partially	ordered	set	has	a	maximal	element.	Why	is
Zorn’s	Lemma	plausible?	Here	is	an	informal	argument.	Given	a	nonempty	inductive	partially	ordered	set	\((P,\le)\),	pick	an	arbitrary	element	\(p_{0}\)	of	\(P\).	If	\(p_{0}\)	is	maximal,	stop	there.	Otherwise	pick	an	element	\(p_{1}	\gt	p_{0}\);	if	\(p_{1}\)	is	maximal,	stop	there.	Otherwise	pick	an	element	\(p_{2}	\gt	p_{1}\),	and	repeat	the	process.	If
none	of	the	elements	\(p_{0}	\lt	p_{1}	\lt	p_{2}	\lt	\ldots	\lt	p_{n}	\lt	\ldots\)	is	maximal,	the	\(p_{i}\)	form	a	chain	which,	since	\(P\)	is	inductive,	has	an	upper	bound	\(q_{0}\).	If	\(q_{0}\)	is	maximal,	stop	there.	Otherwise	the	procedure	can	be	repeated	with	\(q_{0}	\lt	q_{1}\),	…,	and	then	iterated.	This	process	must	eventually	terminate,	since
otherwise	the	union	of	the	chains	so	generated	would	constitute	a	proper	class,	making	\(P\)	itself	a	proper	class	contrary	to	assumption.	The	point	at	which	the	process	terminates	yields	a	maximal	element	of	\(P\).	This	argument,	suitably	rigorized,	gives	a	proof[9]	of	ZL	from	AC1	in	Zermelo-Fraenkel	set	theory:	in	this	proof	AC1	is	used	to	“pick”	the
elements	referred	to	in	the	informal	argument.	Another	version	of	Zorn’s	Lemma	can	be	given	in	terms	of	collections	of	sets.	Given	a	collection	\(\sH\)	of	sets,	let	us	call	a	nest	in	\(\sH\)	any	subcollection	\(\sN\)	of	\(\sH\)	such	that,	for	any	pair	of	members	of	\(\sN\),	one	is	included	in	the	other.[10]	Call	\(\sH\)	strongly	inductive	if	the	union	of	any	nest	in
\(\sH\)	is	a	member	of	\(\sH\).	Zorn’s	Lemma	may	then	be	equivalently	restated	as	the	assertion	that	any	nonempty	strongly	inductive	collection	\(\sH\)	of	sets	has	a	maximal	member,	that	is,	a	member	properly	included	in	no	member	of	\(\sH\).	This	may	in	turn	be	formulated	in	a	dual	form.	Call	a	family	of	sets	strongly	reductive	if	it	is	closed	under
intersections	of	nests.	Then	any	nonempty	strongly	reductive	family	of	sets	has	a	minimal	element,	that	is,	a	member	properly	including	no	member	of	the	family.	AC2	is	now	easily	derived	from	Zorn’s	Lemma	in	this	alternative	form.	For	the	set	\(P\)	of	potential	choice	functions	on	an	indexed	family	of	sets	\(\sA\)	is	clearly	nonempty	and	is	readily
shown	to	be	strongly	inductive;	so	Zorn’s	lemma	yields	the	existence	of	a	choice	function	on	\(\sA\).	CAC	can	be	derived	from	ZL	in	a	way	echoing	the	“combinatorial”	justification	of	CAC	sketched	above.	Accordingly	suppose	we	are	given	a	family	\(\sH\)	of	mutually	disjoint	nonempty	sets;	call	a	subset	\(S	\subseteq	\bigcup	\sH\)	a	sampling	for	\(\sH\)
if,	for	any	\(X\in	\sH\),	either	\(X	\subseteq	S\)	or	\(S	\cap	X\)	is	nonempty	and	finite.	Minimal	samplings	are	precisely	transversals	for	\(\sH\);[11]	and	the	collection	\(\sT\)	of	samplings	is	clearly	nonempty	since	it	contains	\(\bigcup	\sH\).	So	if	it	can	be	shown	that	\(\sT\)	is	strongly	reductive,[12]	Zorn’s	lemma	will	yield	a	minimal	element	of	\(\sT\)	and	so
a	transversal	for	\(\sH\).	The	strong	reductiveness	of	\(\sT\)	may	be	seen	as	follows:	suppose	that	\(\{S_{i}:	i\in	I\}\)	is	a	nest	of	samplings;	let	\(S	=	{\bigcap}_{i\in	I}	S_{i}\).	We	need	to	show	that	\(S\)	is	itself	a	sampling;	to	this	end	let	\(X	\in	\sH\)	and	suppose	\(eg(X	\subseteq	S)\).	Then	there	is	\(i	\in	I\)	for	which	\(eg(X	\subseteq	S_{i})\);	since	\
(S_{i}\)	is	a	sampling,	\(S_{i}\cap	X\)	is	finite	and	nonempty,	say	\(S_{i}\cap	X	=	\{x_{1},	\ldots,	x_{n}\}\).	Clearly	\(S\cap	X\)	is	then	finite;	suppose	for	the	sake	of	contradiction	that	\(S\cap	X	=	\varnothing\).	Then	for	each	\(k	=	1,\ldots,n\)	there	is	\(i_k	\in	I\)	for	which	\(eg(x_k	\in	S_{i_k})\).	It	follows	that	\(eg(S_{i}	\subseteq	S_{i_k})\),	for	\(k	=	1,
\ldots,	n\).	So,	since	the	\(S_{i}\)	form	a	chain,	each	\(S_{i_k}\)	is	a	subset	of	\(S_{i}\).	Let	\(S_{j}\)	be	the	least	of	\(S_{i_1},\ldots,	S_{i_k}\);	then	\(S_{j}\subseteq	S_{i}\).	But	since	\(eg(x_{k}	\in	S_{j})\),	for	\(k	=	1,	\ldots,	n\),	it	now	follows	that	\(S_{j}	\cap	X	=	\varnothing\),	contradicting	the	fact	that	\(S_{j}\)	is	a	sampling.	Therefore	\(S	\cap	Xe
\varnothing\);	and	\(S\)	is	a	sampling	as	claimed.	We	note	that	while	Zorn’s	lemma	and	the	Axiom	of	Choice	are	set-theoretically	equivalent,	it	is	much	more	difficult	to	derive	the	former	from	the	latter	than	vice-versa.	Here	is	a	brief	chronology	of	maximal	principles.	1909	Hausdorff	introduces	first	explicit	formulation	of	a	maximal	principle	and
derives	it	from	AC	(Hausdorff	1909)	1914	Hausdorff’s	Grundzüge	der	Mengenlehre	(one	of	the	first	books	on	set	theory	and	general	topology)	includes	several	maximal	principles.	1922	Kuratowski	formulates	and	employs	several	maximal	principles	in	avoiding	use	of	transfinite	ordinals	(Kuratowski	1922).	1926–28	Bochner	and	others	independently
introduce	maximal	principles	(Bochner	1928,	Moore	1932).	1935	Max	Zorn,	apparently	unacquainted	with	previous	formulations	of	maximal	principles,	publishes	(Zorn	1935)	his	definitive	version	thereof	later	to	become	celebrated	as	his	lemma	(ZL).	ZL	was	first	formulated	in	Hamburg	in	1933,	where	Chevalley	and	Artin	quickly	“adopted”	it.	It
seems	to	have	been	Artin	who	first	recognized	that	ZL	would	yield	AC,	so	that	the	two	are	equivalent	(over	the	remaining	axioms	of	set	theory).	Zorn	regarded	his	principle	less	as	a	theorem	than	as	an	axiom—he	hoped	that	it	would	supersede	cumbersome	applications	in	algebra	of	transfinite	induction	and	well-ordering,	which	algebraists	in	the
Noether	school	had	come	to	regard	as	“transcendental”	devices.	1939–40	Teichmüller,	Bourbaki	and	Tukey	independently	reformulate	ZL	in	terms	of	“properties	of	finite	character”(Bourbaki	1939,	Teichmuller	1939,	Tukey	1940).	4.	Mathematical	Applications	of	the	Axiom	of	Choice	The	Axiom	of	Choice	has	numerous	applications	in	mathematics,	a
number	of	which	have	proved	to	be	formally	equivalent	to	it[13].	Historically	the	most	important	application	was	the	first,	namely:	The	Well-Ordering	Theorem	(Zermelo	1904,	1908).	Every	set	can	be	well-ordered.	After	Zermelo	published	his	1904	proof	of	the	well-ordering	theorem	from	AC,	it	was	quickly	seen	that	the	two	are	equivalent.	Another
early	equivalent	of	AC	is	The	Multiplicative	Axiom	(Russell	1906).	The	product	of	any	set	of	non-zero	cardinal	numbers	is	non-zero.	Early	applications	of	AC	include:	Every	infinite	set	has	a	denumerable	subset.	This	principle,	again	weaker	than	AC,	cannot	be	proved	without	it	in	the	context	of	the	remaining	axioms	of	set	theory.	Every	infinite	cardinal
number	is	equal	to	its	square.	This	was	proved	equivalent	to	AC	in	Tarski	1924.	Every	vector	space	has	a	basis	(initiated	by	Hamel	1905).	This	was	proved	equivalent	to	AC	in	Blass	1984.	Every	field	has	an	algebraic	closure	(Steinitz	1910).	This	assertion	is	weaker	than	AC,	indeed	is	a	consequence	of	the	(weaker)	compactness	theorem	for	first-order
logic	(see	below).	There	is	a	Lebesgue	nonmeasurable	set	of	real	numbers	(Vitali	1905).	This	was	shown	much	later	to	be	a	consequence	of	BPI	(see	below)	and	hence	weaker	than	AC.	Solovay	(1970)	established	its	independence	of	the	remaining	axioms	of	set	theory.	A	significant	“folklore”	equivalent	of	AC	is	The	Set-Theoretic	Distributive	Law.	For
an	arbitrary	doubly-indexed	family	of	sets	\(\{M_{i,j}:	i	\in	I,j	\in	J\}\),	and	where	\(J^I\)	is	the	set	of	all	functions	with	domain	\(I\)	and	which	take	values	in	\(J\):	\[	\bigcap_{i\in	I}	\bigcup_{j\in	J}	M_{i,j}	=	\bigcup_{f\in	J^I}	\bigcap_{i\in	I}	M_{i,f(i)}	\]	A	much-studied	special	case	of	AC	is	the	Principle	of	Dependent	Choices	(Bernays	1942,	Tarski
1948).	For	any	nonempty	relation	\(R\)	on	a	set	\(A\)	for	which	\(\range(R)	\subseteq	\domain(R)\),	there	is	a	function	\(f:	\omega	\rightarrow	A\)	such	that,	for	all	\(n\in	\omega,	R(f(n),f(n+1))\).	This	principle,	although	(much)	weaker	than	AC,	cannot	be	proved	without	it	in	the	context	of	the	remaining	axioms	of	set	theory.	Mathematical	equivalents	of
AC	include:	Tychonov’s	Theorem	(1930):	the	product	of	compact	topological	spaces	is	compact.	This	was	proved	equivalent	to	AC	in	Kelley	1950.	But	for	compact	Hausdorff	spaces	it	is	equivalent	to	BPI	(see	below)	and	hence	weaker	than	AC	Löwenheim-Skolem-Tarski	Theorem	(Löwenheim	1915,	Skolem	1920,	Tarski	and	Vaught	1957):	a	first-order
sentence	having	a	model	of	infinite	cardinality	\(\kappa\)	also	has	a	model	of	any	infinite	cardinality	\(\mu\)	such	that	\(\mu	\le	\kappa\).	This	was	proved	equivalent	to	AC	by	Tarski.	Krein-Milman	Theorem:	the	unit	ball	\(B\)	of	the	dual	of	a	real	normed	linear	space	has	an	extreme	point,	that	is,	one	which	is	not	an	interior	point	of	any	line	segment	in	\
(B\).	This	was	proved	equivalent	to	AC	in	Bell	and	Fremlin	1972a.	There	it	is	shown	that,	given	any	indexed	family	\(\sA\)	of	nonempty	sets,	there	is	a	natural	bijection	between	choice	functions	on	\(\sA\)	and	the	extreme	points	of	the	unit	ball	of	the	dual	of	a	certain	real	normed	linear	space	constructed	from	\(\sA\).	Every	distributive	lattice	has	a
maximal	ideal.	This	was	proved	equivalent	to	AC	in	Klimovsky	1958,	and	for	lattices	of	sets	in	Bell	and	Fremlin	1972.	Every	commutative	ring	with	identity	has	a	maximal	ideal.	This	was	proved	equivalent	to	AC	by	Hodges	1979.	There	are	a	number	of	mathematical	consequences	of	AC	which	are	known	to	be	weaker[14]	than	it,	in	particular:	The
Boolean	Prime	Ideal	Theorem	(BPI):	every	Boolean	algebra	has	a	maximal	(or	prime)	ideal.	This	was	shown	to	be	weaker	than	AC	in	Halpern	and	Levy	1971.	The	Stone	Representation	Theorem	for	Boolean	algebras	(Stone	1936):	every	Boolean	algebra	is	isomorphic	to	a	field	of	sets.	This	is	equivalent	to	BPI	and	hence	weaker	than	AC	Compactness
Theorem	for	First-Order	Logic	(Gödel	1930,	Malcev	1937,	others):	if	every	finite	subset	of	a	set	of	first-order	sentences	has	a	model,	then	the	set	has	a	model.	This	was	shown,	in	Henkin	1954,	to	be	equivalent	to	BPI,	and	hence	weaker	than	AC.	Completeness	Theorem	for	First-Order	Logic	(Gödel	1930,	Henkin	1954):	each	consistent	set	of	first-order
sentences	has	a	model.	This	was	shown	by	Henkin	in	1954	to	be	equivalent	to	BPI,	and	hence	weaker	than	AC.	If	the	cardinality	of	the	model	is	specified	in	the	right	way,	the	assertion	becomes	equivalent	to	AC.	Finally,	there	is	The	Sikorski	Extension	Theorem	for	Boolean	algebras	(Sikorski	1949):	every	complete	Boolean	algebra	is	injective,	i.e.,	for
any	Boolean	algebra	\(A\)	and	any	complete	Boolean	algebra	\(B\),	any	homomorphism	of	a	subalgebra	of	\(A\)	into	\(B\)	can	be	extended	to	the	whole	of	\(A\).	The	question	of	the	equivalence	of	this	with	AC	is	one	of	the	few	remaining	interesting	open	questions	in	this	area;	while	it	clearly	implies	BPI,	it	was	proved	independent	of	BPI	in	Bell	1983.
Many	of	these	theorems	are	discussed	in	Bell	and	Machover	(1977).	5.	The	Axiom	of	Choice	and	Logic	An	initial	connection	between	AC	and	logic	emerges	by	returning	to	its	formulation	AC3	in	terms	of	relations,	namely:	any	binary	relation	contains	a	function	with	the	same	domain.	This	version	of	AC	is	naturally	expressible	within	a	second-order
language	\(L\)	with	individual	variables	\(x\),	\(y\),	\(z\),	…	and	function	variables	\(f\),	\(g\),	\(h\),	….	In	\(L\),	binary	relations	are	represented	by	formulas	\(\phi(x,	y)\)	with	two	free	individual	variables	\(x\),	\(y\).	The	counterpart	in	\(L\)	of	the	assertion	AC3	is	then	ACL:	\(\forall	x	\exists	y	\phi(x,	y)	\rightarrow	\exists	f	\forall	x	\phi(x,	fx).\)	This	scheme	of
sentences	is	the	standard	logical	form	of	AC.	Zermelo’s	original	form	of	the	Axiom	of	Choice,	AC1,	can	be	expressed	as	a	scheme	of	sentences	within	a	suitably	strengthened	version	of	\(L\).	Accordingly	we	now	suppose	\(L\)	to	contain	in	addition	predicate	variables	\(X\),	\(Y\),	\(Z\),	…	and	second-order	function	variables	\(F\),	\(G\),	\(H\),	….	Here	a
second-order	function	variable	\(F\)	may	be	applied	to	a	predicate	variable	\(X\)	to	yield	an	individual	term	\(FX\).	The	scheme	of	sentences	AC1L:	\(\forall	X	[\Phi(X)	\rightarrow	\exists	x	X(x)]	\rightarrow	\exists	F	\forall	X[\Phi(X)	\rightarrow	X(FX)]\)	is	the	direct	counterpart	of	AC1	in	this	strengthened	second-order	language.	In	words,	AC1L	asserts
that,	if	each	predicate	having	a	certain	property	\(\Phi\)	has	instances,	then	there	is	a	function	\(F\)	on	predicates	such	that,	for	any	predicate	\(X\)	satisfying	\(\Phi\),	\(FX\)	is	an	instance	of	\(X\).	Here	predicates	are	playing	the	role	of	sets.	Up	to	now	we	have	tacitly	assumed	our	background	logic	to	be	the	usual	classical	logic.	But	the	true	depth	of	the
connection	between	AC	and	logic	emerges	only	when	intuitionistic	or	constructive	logic	is	brought	into	the	picture.	It	is	a	remarkable	fact	that,	assuming	only	the	framework	of	intuitionistic	logic	together	with	certain	mild	further	presuppositions,	the	Axiom	of	Choice	can	be	shown	to	entail	the	cardinal	rule	of	classical	logic,	the	law	of	excluded	middle
—the	assertion	that	\(A	\vee	eg	A\)	for	any	proposition	\(A\).	To	be	precise,	using	the	rules	of	intuitionistic	logic	within	our	augmented	language	\(L\),	we	shall	derive[15]	the	law	of	excluded	middle	from	AC1L	conjoined	with	the	following	additional	principles:	Predicative	Comprehension:	\(\exists	X	\forall	x[X(x)	\leftrightarrow	\phi(x)]\),	where	\(\phi\)
contains	no	bound	function	or	predicate	variables.	Extensionality	of	Functions:	\(\forall	X	\forall	Y	\forall	F[X	\approx	Y	\rightarrow	FX	=	FY]\),	where	\(X	\approx	Y\)	is	an	abbreviation	for	\(\forall	x[X(x)	\leftrightarrow	Y(x)]\),	that	is,	\(X\)	and	\(Y\)	are	extensionally	equivalent.	Two	Distinct	Individuals:	\(\uO	e	\uI\),	where	\(\uO\)	and	\(\uI\)	are	individual
constants.	Now	let	\(A\)	be	a	given	proposition.	By	Predicative	Comprehension,	we	may	introduce	predicate	constants	\(U\),	\(V\)	together	with	the	assertions	\begin{align}	\tag{1}	&\forall	x[U(x)	\leftrightarrow	(A	\vee	x	=	0)]	\\	otag	&\forall	x[V(x)	\leftrightarrow	(A	\vee	x	=	1)]	\end{align}	Let	\(\Phi(X)\)	be	the	formula	\(X	\approx	U	\vee	X	\approx	V\).
Then	clearly	we	may	assert	\(\forall	X[\Phi(X)	\rightarrow	\exists	xX(x)]\)	so	AC1L	may	be	invoked	to	assert	\(\exists	F	\forall	X[\Phi(X)	\rightarrow	X(FX)]\).	Now	we	can	introduce	a	function	constant	\(K\)	together	with	the	assertion	\[	\tag{2}	\forall	X[\Phi(X)	\rightarrow	X(KX)].	\]	Since	evidently	we	may	assert	\(\Phi(U)\)	and	\(\Phi(V)\),	it	follows	from
(2)	that	we	may	assert	\(U(KU)\)	and	\(V(KV)\),	whence	also,	using	(1),	\[	[A	\vee	KU	=	0]	\wedge	[A	\vee	KV	=	1].	\]	Using	the	distributive	law	(which	holds	in	intuitionistic	logic),	it	follows	that	we	may	assert	\[	A	\vee	[KU	=	0	\wedge	KV	=	1].	\]	From	the	presupposition	that	\(0	e	1\)	it	follows	that	\[	\tag{3}	A	\vee	KU	e	KV	\]	is	assertable.	But	it	follows
from	(1)	that	we	may	assert	\(A	\rightarrow	U	≈	V\),	and	so	also,	using	the	Extensionality	of	Functions,	\(A	\rightarrow	KU	=	KV\).	This	yields	the	assertability	of	\(KU	e	KV	\rightarrow	eg	A\),	which,	together	with	(3)	in	turn	yields	the	assertability	of	\[	A	\vee	eg	A	\]	that	is,	the	law	of	excluded	middle.	The	fact	that	the	Axiom	of	Choice	implies	Excluded
Middle	seems	at	first	sight	to	be	at	variance	with	the	fact	that	the	former	is	often	taken	as	a	valid	principle	in	systems	of	constructive	mathematics	governed	by	intuitionistic	logic,	e.g.	Bishop’s	Constructive	Analysis[16]	and	Martin-Löf’s	Constructive	Type	Theory[17],	in	which	Excluded	Middle	is	not	affirmed.	In	Bishop’s	words,	“A	choice	function
exists	in	constructive	mathematics	because	a	choice	is	implied	by	the	very	meaning	of	existence.”	Thus,	for	example,	the	antecedent	\(\forall	x	\exists	y	\phi(x,y)\)	of	ACL,	given	a	constructive	construal,	just	means	that	we	have	a	procedure	which,	applied	to	each	\(x\),	yields	a	\(y\)	for	which	\(\phi(x,	y)\).	But	this	is	precisely	what	is	expressed	by	the
consequent	\(\exists	f	\forall	x	\phi(x,fx)\)	of	ACL.	To	resolve	the	difficulty,	we	note	that	in	deriving	Excluded	Middle	from	ACL1	essential	use	was	made	of	the	principles	of	Predicative	Comprehension	and	Extensionality	of	Functions[18].	It	follows	that,	in	systems	of	constructive	mathematics	affirming	AC	(but	not	Excluded	Middle)	either	the	principle
of	Predicative	Comprehension	or	the	principle	of	Extensionality	of	Functions	must	fail.	While	the	principle	of	Predicative	Comprehension	can	be	given	a	constructive	justification,	no	such	justification	can	be	provided	for	the	principle	of	Extensionality	of	Functions.	Functions	on	predicates	are	given	intensionally,	and	satisfy	just	the	corresponding
principle	of	Intensionality	\(\forall	X	\forall	Y	\forall	F[X	=	Y	\rightarrow	FX	=	FY]\).	The	principle	of	Extensionality	can	easily	be	made	to	fail	by	considering,	for	example,	the	predicates	\(P\):	rational	featherless	biped	and	\(Q\):	human	being	and	the	function	\(K\)	on	predicates	which	assigns	to	each	predicate	the	number	of	words	in	its	description.
Then	we	can	agree	that	\(P	\approx	Q\)	but	\(KP	=	3\)	and	\(KQ	=	2\).	In	intuitionistic	set	theory	(that	is,	set	theory	based	on	intuitionistic	as	opposed	to	classical	logic—we	shall	abbreviate	this	as	IST)	and	in	topos	theory	the	principles	of	Predicative	Comprehension	and	Extensionality	of	Functions	(both	appropriately	construed)	hold	and	so	there	AC
implies	Excluded	Middle.[19]	,	[20]	The	derivation	of	Excluded	Middle	from	AC	was	first	given	by	Diaconescu	(1975)	in	a	category-theoretic	setting.	His	proof	employed	essentially	different	ideas	from	the	proof	presented	above;	in	particular,	it	makes	no	use	of	extensionality	principles	but	instead	employs	the	idea	of	the	quotient	of	an	object	(or	set)	by
an	equivalence	relation.	It	is	instructive	to	formulate	Diaconescu’s	argument	within	IST.	To	do	this,	let	us	call	a	subset	\(U\)	of	a	set	\(A\)	detachable	if	there	is	a	subset	\(V\)	of	\(A\)	for	which	\(U	\cap	V	=	\varnothing\)	and	\(U	\cup	V	=	A\).	Diaconescu’s	argument	amounts	to	a	derivation	from	AC4	(see	above)	of	the	assertion	that	every	subset	of	a	set	is
detachable,	from	which	Excluded	Middle	readily	follows.	Here	it	is.	First,	given	\(U	\subseteq	A\),	an	indicator	for	\(U\)	(in	\(A\))	is	a	map	\(g:	A	\times	2	\rightarrow	2\)	satisfying	\[	U	=	\{	x	\in	A:	g(x,0)	=	g(x,1)	\}	\]	It	is	then	easy	to	show	that	a	subset	is	detachable	if	and	only	if	it	has	an	indicator.	Now	we	show	that,	if	AC4	holds,	then	any	subset	of	a
set	has	an	indicator,	and	hence	is	detachable.	For	\(U	\subseteq	A\),	let	\(R\)	be	the	binary	relation	on	\(A	+	A	=	A	\times	\{0\}	\cup	A	\times	\{1\}\)	given	by	\[	R	=	\{	((x,0),(x,0))	:	x	\in	A	\}	\cup	\{	((x,1),(x,1))	:	x	\in	A	\}	\cup	\{	((x,0),(x,1)	:	x	\in	A	\}	\cup	\{	((x,1),(x,0)	\}	:	x	\in	A	\]	It	can	be	checked	that	\(R\)	is	an	equivalence	relation.	Write	\(r\)	for	the
natural	map	from	\(A	+	A\)	to	the	quotient[21]	\(Q\)	of	\((A	+	A)\)	by	\(R\)	which	carries	each	member	of	\(A	+	A\)	to	its	\(R-\)equivalence	class.	Now	apply	AC4	to	obtain	a	map	\(f:	Q	\rightarrow	A	+	A\)	satisfying	\(f(X)	\in	X\)	for	all	\(X	\in	Q\).	It	is	then	not	hard	to	show	that,	writing	\(\pi_{1}\)	for	projection	on	the	first	coordinate,	\[	\tag{*}	\mbox{for	}
n=0,1	\mbox{	and	}	x	\in	A,	\pi_1(f(r(x,n)))	=	x;	\]	and	\[	\tag{**}	x	\in	U	\leftrightarrow	f(r(x,0))	=	f(r(x,1)).	\]	Now	define	\(g:	A	\times	2	\rightarrow	2\)	by	\(g	=	\pi_{2}	\circ	f	\circ	r\),	where	\(\pi_2\)	is	a	projection	on	the	second	coordinate.	Then	\(g\)	is	an	indicator	for	\(U\),	as	the	following	equivalences	show:	\begin{align}	x	\in	U	&\leftrightarrow
f(r(x,0))=f(r(x,1))	\ldots	\mbox{by	(**)}	\\	&\leftrightarrow	\pi_{1}(f(r(x,0)))	=	\pi_{1}(f(r(x,1)))	\wedge	\pi_{2}(f(r(x,0)))	=	\pi_{2}(f(r(x,1)))	\\	&\leftrightarrow	\pi_{2}(f(r(x,0)))	=	\pi_{2}(f(r(x,1)))	\ldots	\mbox{using	(*)}	\\	&\leftrightarrow	g(x,0)	=	g(x,1).	\end{align}	The	proof	is	complete.	It	can	be	shown	(Bell	2006)	that	each	of	a	number	of
intuitionistically	invalid	logical	principles,	including	the	law	of	excluded	middle,	is	equivalent	(in	intuitionistic	set	theory)	to	a	suitably	weakened	version	of	the	axiom	of	choice.	Accordingly	these	logical	principles	may	be	viewed	as	choice	principles.	Here	are	the	logical	principles	at	issue:	SLEM	\(\alpha	\vee	eg	\alpha\)	(\(\alpha\)	any	sentence)	Lin	\
((\alpha	\rightarrow	\beta)	\vee	(\beta	\rightarrow	\alpha)\)	(\(\alpha\),	\(\beta\)	any	sentences)	Stone	\(eg	\alpha	\vee	egeg	\alpha\)	(\(\alpha\)	any	sentence)	Ex	\(\exists	x[	\exists	x	\alpha(x)	\rightarrow	\alpha(x)]\)	(\(\alpha(x)\)	any	formula	with	at	most	\(x\)	free)	Un	\(\exists	x[\alpha(x)	\rightarrow	\forall	x\alpha(x)]\)	(\(\alpha(x)\)	any	formula	with	at	most
\(x\)	free)	Dis	\(\forall	x[\alpha	\vee	\beta(x)]	\rightarrow	\alpha\vee\forall	x\beta(x)\)	(\(\alpha\)	any	sentence,	\(\beta(x)\)	any	formula	with	at	most	\(x\)	free)	Over	intuitionistic	logic,	Lin,	Stone	and	Ex	are	consequences	of	SLEM;	and	Un	implies	Dis.	All	of	these	schemes	follow,	of	course,	from	the	full	law	of	excluded	middle,	that	is	SLEM	for	arbitrary
formulas.	In	what	follows	the	empty	set	is	denoted	by	0,	\(\{0\}\)	by	1,	and	\(\{0,	1\}\)	by	2.	We	formulate	the	following	choice	principles—here	\(X\)	is	an	arbitrary	set,	\(\Fun(X)\)	the	class	of	functions	with	domain	\(X\)	and	\(\phi(x,y)\)	an	arbitrary	formula	of	the	language	of	set	theory	with	at	most	the	free	variables	\(x\),	\(y\):	AC\(_X\)	\(\forall	x\in	X\
\exists	y	\phi(x,y)	\rightarrow	\exists	f	\in	\Fun(X)\	\forall	x	\in	X\	\phi(x,fx)\)	AC\(^*_X\)	\({\exists	f	\inn	\Fun(X)}	[{\forall	x\inn	X}\	\exists	y	\phi(x,y)	\rightarrow	{\forall	x	\inn	X}\	\phi(x,fx)]\)	DAC\(_X\)	\(\forall	f	\inn	Fun(X)\	{\exists	x	\inn	X}\	\phi(x,fx)	\rightarrow	{\exists	x	\inn	X}\	\forall	y	\phi(x,y)\)	DAC\(^*_X\)	\({\exists	f	\inn	\Fun(X)}\	[{\exists	x\inn
X}\	\phi(x,fx)	\rightarrow	{\exists	x	\inn	X}\	\forall	y	\phi(x,y)]\)	The	first	two	of	these	are	forms	of	AC	for	\(X\);	while	classically	equivalent,	in	IST	AC\(^*_X\)	implies	AC\(_X\),	but	not	conversely.	The	principles	DAC\(_X\)	and	DAC\(^*_X\)	are	dual	forms	of	the	axiom	of	choice	for	\(X\):	classically	they	are	both	equivalent	to	AC\(_X\)	and	AC\(^*_X\)	but
intuitionistically	DAC\(^*_X\)	implies	DAC\(_X\),	and	not	conversely.	We	also	formulate	the	weak	extensional	selection	principle,	in	which	\(\alpha(x)\)	and	\(\beta(x)\)	are	any	formulas	with	at	most	the	variable	\(x\)	free:	WESP:	\({\exists	x\inn	2}\	\alpha(x)	\wedge	{\exists	x	\inn	2}\	\beta(x)	\rightarrow	{\exists	x	\inn	2}\	{\exists	y	\inn	2}\	[\alpha(x)
\wedge	\beta(y)	\wedge	[{\forall	x	\inn	2}\	[\alpha(x)	\leftrightarrow	\beta(x)]	\rightarrow	x	=	y]].\)	This	principle,	a	straightforward	consequence	of	the	axiom	of	choice,	asserts	that,	for	any	pair	of	instantiated	properties	of	members	of	2,	instances	may	be	assigned	to	the	properties	in	a	manner	that	depends	just	on	their	extensions.	Each	of	the	logical
principles	tabulated	above	is	equivalent	(in	IST)	to	a	choice	principle.	In	fact:	WESP	and	SLEM	are	equivalent	over	IST.	AC\(^*_1\)	and	Ex	are	equivalent	over	IST.	Further,	while	DAC\(_1\)	is	easily	seen	to	be	provable	in	IST,	we	have	DAC\(^*_1\)	and	Un	are	equivalent	over	IST.	Next,	while	AC\(_2\)	is	easily	proved	in	IST,	by	contrast	we	have	DAC\
(_2\)	and	Dis	are	equivalent	over	IST.	Over	IST,	DAC\(^*_2\)	is	equivalent	to	Un,	and	hence	also	to	DAC\(^*_1\).	In	order	to	provide	choice	schemes	equivalent	to	Lin	and	Stone	we	introduce	ac\(^*_X\):	\({\exists	f	\inn	2^X}	[{\forall	x\inn	X}\	{\exists	y	\inn	2}\	\phi(x,y)	\rightarrow	{\exists	x	\inn	X}\	\phi(x,fx)]\)	wac\(^*_X\):	\({\exists	f	\inn	2^X}
[{\forall	x	\inn	X}\	{\exists	y	\inn	2}\	\phi(x,y)	\rightarrow	{\forall	x	\inn	X}\	\phi(x,fx)]\)	provided	it	is	provable	in	IST	that	\(\forall	x[\phi(x,0)	\rightarrow	eg\phi(x,1)]\)	Clearly	ac\(^*_X\)	is	equivalent	to	\({\exists	f	\inn	2^X}[{\forall	x	\inn	X}[\phi(x,0)	\vee	\phi(x,1)]	\rightarrow	{\forall	x	\inn	X}\	\phi(x,fx)]\)	and	similarly	for	dac\(^*_X\).	Then,	over	IST,
ac\(^*_1\)	and	dac\(^*_1\)	are	equivalent,	respectively,	to	Lin	and	Stone.	These	results	show	just	how	deeply	choice	principles	interact	with	logic,	when	the	background	logic	is	assumed	to	be	intuitionistic.	In	a	classical	setting	where	the	Law	of	Excluded	Middle	is	assumed	these	connections	are	obliterated.	Readers	interested	in	the	topic	of	the	axiom
of	choice	and	type	theory	may	consult	the	following	supplementary	document:	The	Axiom	of	Choice	and	Type	Theory
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